Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
1.
Anal Chem ; 96(16): 6106-6111, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38594830

RESUMO

This study explores the innovative field of pulsed direct current arc-induced nanoelectrospray ionization mass spectrometry (DCAI-nano-ESI-MS), which utilizes a low-temperature direct current (DC) arc to induce ESI during MS analyses. By employing a 15 kV output voltage, the DCAI-nano-ESI source effectively identifies various biological molecules, including angiotensin II, bradykinin, cytochrome C, and soybean lecithin, showcasing impressive analyte signals and facilitating multicharge MS in positive- and negative-ion modes. Notably, results show that the oxidation of fatty acids using a DC arc produces [M + O - H]- ions, which aid in identifying the location of C═C bonds in unsaturated fatty acids and distinguishing between isomers based on diagnostic ions observed during collision-induced dissociation tandem MS. This study presents an approach for identifying the sn-1 and sn-2 positions in phosphatidylcholine using phosphatidylcholine and nitrate adduct ions, accurately determining phosphatidylcholine molecular configurations via the Paternò-Büchi reaction. With all the advantages above, DCAI-nano-ESI holds significant promise for future analytical and bioanalytical applications.


Assuntos
Nanotecnologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Citocromos c/química , Citocromos c/análise , Bradicinina/química , Bradicinina/análise , Angiotensina II/química , Angiotensina II/análise , Fosfatidilcolinas/química , Fosfatidilcolinas/análise , Soja/química
2.
Soft Matter ; 19(26): 4869-4879, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37334565

RESUMO

Bradykinin (BK) is a peptide hormone that plays a crucial role in blood pressure control, regulates inflammation in the human body, and has recently been implicated in the pathophysiology of COVID-19. In this study, we report a strategy for fabricating highly ordered 1D nanostructures of BK using DNA fragments as a template for self-assembly. We have combined synchrotron small-angle X-ray scattering and high-resolution microscopy to provide insights into the nanoscale structure of BK-DNA complexes, unveiling the formation of ordered nanofibrils. Fluorescence assays hint that BK is more efficient at displacing minor-groove binders in comparison with base-intercalant dyes, thus, suggesting that interaction with DNA strands is mediated by electrostatic attraction between cationic groups at BK and the high negative electron density of minor-grooves. Our data also revealed an intriguing finding that BK-DNA complexes can induce a limited uptake of nucleotides by HEK-293t cells, which is a feature that has not been previously reported for BK. Moreover, we observed that the complexes retained the native bioactivity of BK, including the ability to modulate Ca2+ response into endothelial HUVEC cells. Overall, the findings presented here demonstrate a promising strategy for the fabrication of fibrillar structures of BK using DNA as a template, which keep bioactivity features of the native peptide and may have implications in the development of nanotherapeutics for hypertension and related disorders.


Assuntos
Bradicinina , COVID-19 , Humanos , Bradicinina/química , Bradicinina/farmacologia , Peptídeos , Transdução de Sinais , Células Endoteliais
3.
Comput Biol Med ; 159: 106951, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086660

RESUMO

Serratiopeptidase is a multifaceted therapeutic enzyme renowned for its anti-inflammatory, analgesic, anti-biofilm, fibrinolytic, and anti-edemic properties. It is vital to uncover more about the assets of such efficacious enzyme in order to facilitate their contribution in all health-related issues, notably inflammatory ailments. The current study sought to determine whether serratiopeptidase would disintegrate bradykinin related peptides (BRPs) from wasp venom in the same manner as it does with human bradykinin. To accomplish this objective, we docked selected BRPs onto the binding pocket of wild and previously identified mutant (N412D) of serratiopeptidase. Based on their docked scores, the top two BRPs were selected, and their conformational behavior was analyzed employing molecular dynamics studies. Additionally, thermodynamics end-state energy analysis reported that both the complexes exhibited higher stability and identical ΔG values when compared to the reference complex. Further, we condemned the external pulling forces on both peptides to observe the force needed in the disassociation process to endorse the binding affinity findings in terms of unbinding mechanism. This analysis suggested that BRP-7 (Wasp kinin PMM1) peptide was tightly anchored and laid out the highest pulling force to get detach from the active pocket of serratiopeptidase in contrast to the BRP-6 peptide. The current study endorses up the present findings and paves the way for serratiopeptidase to be used as an anti-angioedemic peptidase as well as a fixed-dose combination (FDC) in hypotensive drugs.


Assuntos
Mordeduras e Picadas de Insetos , Vespas , Animais , Humanos , Bradicinina/química , Mordeduras e Picadas de Insetos/tratamento farmacológico , Peptídeos/química , Peptídeo Hidrolases/química , Peptídeo Hidrolases/uso terapêutico , Anti-Inflamatórios não Esteroides
4.
Blood Adv ; 7(7): 1156-1167, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36409609

RESUMO

A dysregulated plasma contact system is involved in various pathological conditions, such as hereditary angioedema, Alzheimer disease, and sepsis. We previously showed that the 3E8 anti-high molecular weight kininogen (anti-HK) antibody blocks HK cleavage and bradykinin generation in human plasma ex vivo. Here, we show that 3E8 prevented not only HK cleavage but also factor XI (FXI) and prekallikrein (PK) activation by blocking their binding to HK in mouse plasma in vivo. 3E8 also inhibited contact system-induced bradykinin generation in vivo. Interestingly, FXII activation was also inhibited, likely because of the ability of 3E8 to block the positive feedback activation of FXII by kallikrein (PKa). In human plasma, 3E8 also blocked PK and FXI binding to HK and inhibited both thrombotic (FXI activation) and inflammatory pathways (PK activation and HK cleavage) of the plasma contact system activation ex vivo. Moreover, 3E8 blocked PKa binding to HK and dose-dependently inhibited PKa cleavage of HK. Our results reveal a novel strategy to inhibit contact system activation in vivo, which may provide an effective method to treat human diseases involving contact system dysregulation.


Assuntos
Pré-Calicreína , Trombose , Humanos , Animais , Camundongos , Pré-Calicreína/química , Pré-Calicreína/metabolismo , Fator XI/metabolismo , Bradicinina/farmacologia , Bradicinina/química , Cininogênio de Alto Peso Molecular/química , Cininogênio de Alto Peso Molecular/metabolismo
5.
Nat Commun ; 13(1): 714, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132089

RESUMO

The type 2 bradykinin receptor (B2R) is a G protein-coupled receptor (GPCR) in the cardiovascular system, and the dysfunction of B2R leads to inflammation, hereditary angioedema, and pain. Bradykinin and kallidin are both endogenous peptide agonists of B2R, acting as vasodilators to protect the cardiovascular system. Here we determine two cryo-electron microscopy (cryo-EM) structures of human B2R-Gq in complex with bradykinin and kallidin at 3.0 Å and 2.9 Å resolution, respectively. The ligand-binding pocket accommodates S-shaped peptides, with aspartic acids and glutamates as an anion trap. The phenylalanines at the tail of the peptides induce significant conformational changes in the toggle switch W2836.48, the conserved PIF, DRY, and NPxxY motifs, for the B2R activation. This further induces the extensive interactions of the intracellular loops ICL2/3 and helix 8 with Gq proteins. Our structures elucidate the molecular mechanisms for the ligand binding, receptor activation, and Gq proteins coupling of B2R.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Receptor B2 da Bradicinina/química , Sequência de Aminoácidos , Sítios de Ligação , Bradicinina/química , Bradicinina/metabolismo , Microscopia Crioeletrônica , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Calidina/química , Calidina/metabolismo , Ligantes , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptor B2 da Bradicinina/metabolismo
6.
Commun Biol ; 5(1): 74, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058552

RESUMO

Acute ischemic stroke triggers complex systemic pathological responses for which the exploration of drug resources remains a challenge. Wasp venom extracted from Vespa magnifica (Smith, 1852) is most commonly used to treat rheumatoid arthritis as well as neurological disorders. Vespakinin-M (VK), a natural peptide from wasp venom, has remained largely unexplored for stroke. Herein, we first confirmed the structure, stability, toxicity and distribution of VK as well as its penetration into the blood-brain barrier. VK (150 and 300 µg/kg, i.p.) was administered to improve stroke constructed by middle cerebral artery occlusion in mice. Our results indicate that VK promote functional recovery in mice after ischemia stroke, including an improvement of neurological impairment, reduction of infarct volume, maintenance of blood-brain barrier integrity, and an obstruction of the inflammatory response and oxidative stress. In addition, VK treatment led to reduced neuroinflammation and apoptosis associated with the activation of PI3K-AKT and inhibition of IκBα-NF-κB signaling pathways. Simultaneously, we confirmed that VK can combine with bradykinin receptor 2 (B2R) as detected by molecular docking, the B2R antagonist HOE140 could counteract the neuro-protective effects of VK on stroke in mice. Overall, targeting the VK-B2R interaction can be considered as a practical strategy for stroke therapy.


Assuntos
Bradicinina/análogos & derivados , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Vespas/química , Animais , Barreira Hematoencefálica/fisiopatologia , Bradicinina/química , Bradicinina/farmacologia , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Masculino , Camundongos , Fármacos Neuroprotetores/química
7.
Microbiol Spectr ; 9(3): e0073521, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935423

RESUMO

SARS-CoV-2 infection can cause compromised respiratory function and thrombotic events. SARS-CoV-2 binds to and mediates downregulation of angiotensin converting enzyme 2 (ACE2) on cells that it infects. Theoretically, diminished enzymatic activity of ACE2 may result in increased concentrations of pro-inflammatory molecules, angiotensin II, and Bradykinin, contributing to SARS-CoV-2 pathology. Using immunofluorescence microscopy of lung tissues from uninfected, and SARS-CoV-2 infected individuals, we find evidence that ACE2 is highly expressed in human pulmonary alveolar epithelial cells and significantly reduced along the alveolar lining of SARS-CoV-2 infected lungs. Ex vivo analyses of primary human cells, indicated that ACE2 is readily detected in pulmonary alveolar epithelial and aortic endothelial cells. Exposure of these cells to spike protein of SARS-CoV-2 was sufficient to reduce ACE2 expression. Moreover, exposure of endothelial cells to spike protein-induced dysfunction, caspase activation, and apoptosis. Exposure of endothelial cells to bradykinin caused calcium signaling and endothelial dysfunction (increased expression of von Willibrand Factor and decreased expression of Krüppel-like Factor 2) but did not adversely affect viability in primary human aortic endothelial cells. Computer-assisted analyses of molecules with potential to bind bradykinin receptor B2 (BKRB2), suggested a potential role for aspirin as a BK antagonist. When tested in our in vitro model, we found evidence that aspirin can blunt cell signaling and endothelial dysfunction caused by bradykinin in these cells. Interference with interactions of spike protein or bradykinin with endothelial cells may serve as an important strategy to stabilize microvascular homeostasis in COVID-19 disease. IMPORTANCE SARS-CoV-2 causes complex effects on microvascular homeostasis that potentially contribute to organ dysfunction and coagulopathies. SARS-CoV-2 binds to, and causes downregulation of angiotensin converting enzyme 2 (ACE2) on cells that it infects. It is thought that reduced ACE2 enzymatic activity can contribute to inflammation and pathology in the lung. Our studies add to this understanding by providing evidence that spike protein alone can mediate adverse effects on vascular cells. Understanding these mechanisms of pathogenesis may provide rationale for interventions that could limit microvascular events associated with SARS-CoV-2 infection.


Assuntos
COVID-19/fisiopatologia , Células Endoteliais/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Aorta/citologia , Aorta/metabolismo , Aorta/virologia , Apoptose , Bradicinina/química , Bradicinina/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Homeostase , Humanos , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/virologia , Microcirculação , Receptores da Bradicinina/química , Receptores da Bradicinina/genética , Receptores da Bradicinina/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
8.
J Med Chem ; 64(23): 17051-17062, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34699215

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer with poor prognosis. Here, we present a peptide-drug conjugate (PDC)─bradykinin-potentiating peptide-paclitaxel (BPP-PTX) conjugate─synthesized by conjugating BPP9a with PTX via a succinyl linker. BPP-PTX targets the angiotensin-converting enzyme (ACE) on TNBC cells. ACE was found to be ectopically expressed in two TNBC cell lines but was absent in both the receptor-positive breast cancer cell line and healthy kidney cell line. Overexpression, knockdown, and competitive inhibition experiments demonstrated ACE-mediated cytotoxicity of BPP-PTX. In vivo, ACE-positive tumors were enriched with BPP-PTX, with the PDC being better tolerated than plain PTX. Compared with plain PTX, BPP-PTX exhibited improved tumor-suppressive effects in MDA-MB-468 xenografted female nude mice. Meanwhile, BPP-PTX resulted in less body weight loss and white blood cell reduction toxicity. These results collectively imply the novelty, efficacy, and low-toxicity profile of BPP-PTX as a potential therapeutic for ACE-positive TNBC.


Assuntos
Bradicinina/química , Oligopeptídeos/farmacologia , Paclitaxel/farmacologia , Peptidil Dipeptidase A/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Paclitaxel/química , Distribuição Tecidual , Neoplasias de Mama Triplo Negativas/enzimologia
9.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33397811

RESUMO

Kallikrein (PKa), generated by activation of its precursor prekallikrein (PK), plays a role in the contact activation phase of coagulation and functions in the kallikrein-kinin system to generate bradykinin. The general dogma has been that the contribution of PKa to the coagulation cascade is dependent on its action on FXII. Recently this dogma has been challenged by studies in human plasma showing thrombin generation due to PKa activity on FIX and also by murine studies showing formation of FIXa-antithrombin complexes in FXI deficient mice. In this study, we demonstrate high-affinity binding interactions between PK(a) and FIX(a) using surface plasmon resonance and show that these interactions are likely to occur under physiological conditions. Furthermore, we directly demonstrate dose- and time-dependent cleavage of FIX by PKa in a purified system by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and chromogenic assays. By using normal pooled plasma and a range of coagulation factor-deficient plasmas, we show that this action of PKa on FIX not only results in thrombin generation, but also promotes fibrin formation in the absence of FXII or FXI. Comparison of the kinetics of either FXIa- or PKa-induced activation of FIX suggest that PKa could be a significant physiological activator of FIX. Our data indicate that the coagulation cascade needs to be redefined to indicate that PKa can directly activate FIX. The circumstances that drive PKa substrate specificity remain to be determined.


Assuntos
Bradicinina/metabolismo , Fator IX/metabolismo , Fator XII/metabolismo , Fibrina/metabolismo , Calicreínas/metabolismo , Trombina/metabolismo , Coagulação Sanguínea/fisiologia , Bradicinina/química , Cálcio/química , Cálcio/metabolismo , Cátions Bivalentes , Fator IX/química , Fator XI/química , Fator XI/metabolismo , Fator XII/química , Fibrina/química , Humanos , Calicreínas/química , Cinética , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ligação Proteica , Trombina/química
10.
Biochem Pharmacol ; 181: 114105, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32579959

RESUMO

Cardiovascular diseases such as coronary and peripheral artery diseases, venous thrombosis, stroke, hypertension, and heart failure are enormous burden to health and economy globally. Snake venoms have been the sources of discovery of successful therapeutics targeting cardiovascular diseases. For example, the first-in-class angiotensin-converting enzyme inhibitor captopril was designed largely based on bradykinin-potentiating peptides from Bothrops jararaca venom. In the recent years, sensitive and high throughput approaches drive discovery and cataloging of new snake venom toxins. As one of the largest class of snake venom toxin, there are now>700 sequences of three-finger toxins (3FTxs) available, many of which are yet to be studied. While the function of 3FTxs are normally associated with neurotoxicity, increasingly more 3FTxs have been characterized to have pharmacological effects on cardiovascular systems. Here we focus on this family of snake venom toxins and their potential in developing therapeutics against cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Peptídeos/uso terapêutico , Venenos de Serpentes/uso terapêutico , Toxinas Biológicas/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Bradicinina/química , Captopril/química , Captopril/uso terapêutico , Desenvolvimento de Medicamentos/métodos , Humanos , Peptídeos/química , Venenos de Serpentes/química , Toxinas Biológicas/química
11.
Thromb Haemost ; 120(3): 400-411, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31940673

RESUMO

Factor XII (FXII) zymogen activation requires cleavage after arginine 353 located in the activation loop. This cleavage can be executed by activated FXII (autoactivation), plasma kallikrein (PKa), or plasmin. Previous studies proposed that the activation loop of FXII is shielded to regulate FXII activation and subsequent contact activation. In this study, we aimed to elucidate this mechanism by expressing and characterizing seven consecutive N-terminally truncated FXII variants as well as full-length wild-type (WT) FXII. As soon as the fibronectin type II domain is lacking (FXII Δ1-71), FXII cleavage products appear on Western blot. These fragments display spontaneous amidolytic activity, indicating that FXII without the fibronectin type II domain is susceptible to autoactivation. Additionally, truncated FXII Δ1-71 is more easily activated by PKa or plasmin than full-length WT FXII. To exclude a contribution of autoactivation, we expressed active-site incapacitated FXII truncation variants (S544A). FXII S544A Δ1-71 is highly susceptible to cleavage by PKa, indicating exposure of the activation loop. In surface binding experiments, we found that the fibronectin type II domain is non-essential for binding to kaolin or polyphosphate, whereas the following epidermal growth factor-like domain is indispensable. Binding of full-length FXII S544A to kaolin or polyphosphate increases its susceptibility to cleavage by PKa. Moreover, the activation of full-length WT FXII by PKa increases approximately threefold in the presence of kaolin. Deletion of the fibronectin type II domain eliminates this effect. Combined, these findings suggest that the fibronectin type II domain shields the activation loop of FXII, ensuring zymogen quiescence.


Assuntos
Precursores Enzimáticos/química , Fator XII/química , Fibrinolisina/química , Fibronectinas/química , Calicreínas/química , Animais , Sítios de Ligação , Coagulação Sanguínea , Bradicinina/química , Domínio Catalítico , Bovinos , Fator XIIa/química , Fibronectinas/sangue , Células HEK293 , Humanos , Calicreínas/sangue , Caulim/química , Polifosfatos/química , Ligação Proteica , Domínios Proteicos
12.
Sci Rep ; 9(1): 14585, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601981

RESUMO

Mycoplasma hyopneumoniae is an economically-devastating and geographically-widespread pathogen that colonises ciliated epithelium, and destroys mucociliary function. M. hyopneumoniae devotes ~5% of its reduced genome to encode members of the P97 and P102 adhesin families that are critical for colonising epithelial cilia, but mechanisms to impair mucociliary clearance and manipulate host immune response to induce a chronic infectious state have remained elusive. Here we identified two surface exposed M. hyopneumoniae proteases, a putative Xaa-Pro aminopeptidase (MHJ_0659; PepP) and a putative oligoendopeptidase F (MHJ_0522; PepF), using immunofluorescence microscopy and two orthogonal proteomic methodologies. MHJ_0659 and MHJ_0522 were purified as polyhistidine fusion proteins and shown, using a novel MALDI-TOF MS assay, to degrade four pro-inflammatory peptides that regulate lung homeostasis; bradykinin (BK), substance P (SP), neurokinin A (NKA) and neuropeptide Y (NPY). These findings provide insight into the mechanisms used by M. hyopneumoniae to influence ciliary beat frequency, impair mucociliary clearance, and initiate a chronic infectious disease state in swine, features that are a hallmark of disease caused by this pathogen.


Assuntos
Aminopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Bradicinina/química , Metaloendopeptidases/metabolismo , Mycoplasma hyopneumoniae/enzimologia , Neurocinina A/química , Neuropeptídeo Y/química , Substância P/química , Adesinas Bacterianas/metabolismo , Animais , Imunidade Inata , Proteômica , Suínos , Tripsina/química
13.
Molecules ; 24(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370142

RESUMO

Hypertension is considered a major public health issue due to its high prevalence and subsequent risk of cardiovascular and kidney diseases. Thus, the search for new antihypertensive compounds remains of great interest. Snake venoms provide an abundant source of lead molecules that affect the cardiovascular system, which makes them prominent from a pharmaceutical perspective. Such snake venom components include bradykinin potentiating peptides (proline-rich oligopeptides), natriuretic peptides, phospholipases A2, serine-proteases and vascular endothelial growth factors. Some heparin binding hypotensive factors, three-finger toxins and 5' nucleotidases can also exert blood pressure lowering activity. Great advances have been made during the last decade regarding the understanding of the mechanism of action of these hypotensive proteins. Bradykinin potentiating peptides exert their action primarily by inhibiting the angiotensin-converting enzyme and increasing the effect of endogenous bradykinin. Snake venom phospholipases A2 are capable of reducing blood pressure through the production of arachidonic acid, a precursor of cyclooxygenase metabolites (prostaglandins or prostacyclin). Other snake venom proteins mimic the effects of endogenous kallikrein, natriuretic peptides or vascular endothelial growth factors. The aim of this work was to review the current state of knowledge regarding snake venom components with potential antihypertensive activity and their mechanisms of action.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Hipotensão/tratamento farmacológico , Inibidores da Enzima Conversora de Angiotensina/química , Animais , Anti-Hipertensivos/química , Bradicinina/química , Bradicinina/uso terapêutico , Humanos , Peptídeos/química , Peptídeos/uso terapêutico , Venenos de Serpentes/química
15.
Fitoterapia ; 136: 104163, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31071434

RESUMO

Tannins are a heterogeneous class of polyphenols that are present in several plants and foods. Their ability to interact and precipitate proline-rich proteins leads to different effects such as astringency or antidiarrheal activity. Thus, evaluation of the tannin content in plant extracts plays a key role in understanding their potential use as pharmaceuticals and nutraceuticals. Several methods have been proposed to study tannin-protein interactions but few of them are focused on quantification. The purpose of the present work is to set up a suitable and time efficient method able to quantify the extent of tannin protein precipitation. Bradykinin, chosen as a model, was incubated with increasing concentrations of 1,2,3,4,6-penta-O-galloyl-ß-d-glucose and tannic acid selected as reference of tannic compounds. Bradykinin not precipitated was determined by a mass spectrometer TSQ Quantum Ultra Triple Quadrupole (direct infusion analysis). The results were expressed as PC50, which is the concentration able to precipitate 50% of the protein. The type of tannin-protein interaction was evaluated also after precipitate solubilisation. The involvement of proline residues in tannin-protein interactions was confirmed by repeating the experiment using a synthesized peptide (RR-9) characterized by the same bradykinin sequence, but having proline residues replaced by glycine residues: no interaction occurred between the peptide and the tannins. Moreover, modelling studies on PGG-BK and PGG-RR-9 were performed to deeply investigate the involvement of prolines: a balance of hydrophobic and H-bond contacts stabilizes the PGG-BK cluster and the proline residues exert a crucial role thus allowing the PGG molecules to elicit a sticking effect.


Assuntos
Peptídeos/química , Prolina/química , Taninos/química , Bradicinina/química , Espectrometria de Massas
16.
J Am Soc Mass Spectrom ; 30(7): 1204-1212, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025294

RESUMO

Ion mobility spectrometry-mass spectrometry (IMS-MS) has demonstrated the ability to characterize structures of weakly-bound peptide assemblies. However, these assemblies can potentially dissociate during the IMS-MS measurement if they undergo energetic ion-neutral collisions. Here, we investigate the ability of tandem-trapped ion mobility spectrometry-mass spectrometry (TIMS-TIMS-MS) to retain weakly-bound peptide assemblies. We assess ion heating and dissociaton in the tandem-TIMS instrument using bradykinin and its assemblies as reference systems. Our data indicate that non-covalent bradykinin assemblies are largely preserved in TIMS-TIMS under carefully selected operating conditions. Importantly, we observe quadruply-charged bradykinin tetramers, which attests to the "softness" of our instrument. Graphical Abstract.


Assuntos
Bradicinina/química , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas em Tandem/métodos , Desenho de Equipamento , Calefação , Espectrometria de Mobilidade Iônica/instrumentação , Íons/química , Multimerização Proteica , Espectrometria de Massas em Tandem/instrumentação
17.
Eur J Pharm Sci ; 132: 121-124, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30849486

RESUMO

Icatibant is a peptidomimetic drug serving as a bradykinin-receptor antagonist and is approved in Europe and the United States for the treatment of hereditary angioedema attacks. We have detected an impurity with a high structural similarity to icatibant in pharmaceutical dosage forms using an optimized chromatographic method based on reversed phase high performance liquid chromatography with UV detection. The abundance of the impurity was around 1% relative to the icatibant peak following storage at room temperature for 1 month, and raised up to ~16% upon temperature stressing at 100 °C. The impurity was isolated by fraction collection and further purified by solid phase extraction for structural identification. NMR and high resolution mass spectrometric analyses revealed that this impurity results from isomerization in the N-terminal single amino acid residue. The new impurity may warrant particular attention due to its exceptional similarity to the active ingredient icatibant.


Assuntos
Antagonistas de Receptor B2 da Bradicinina/química , Bradicinina/análogos & derivados , Contaminação de Medicamentos , Bradicinina/química , Bradicinina/normas , Antagonistas de Receptor B2 da Bradicinina/normas , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Estrutura Molecular , Estereoisomerismo
18.
Anal Bioanal Chem ; 411(11): 2339-2349, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30899997

RESUMO

We introduce rapid replica molding of ordered, high-aspect-ratio, thiol-ene micropillar arrays for implementation of microfluidic immobilized enzyme reactors (IMERs). By exploiting the abundance of free surface thiols of off-stoichiometric thiol-ene compositions, we were able to functionalize the native thiol-ene micropillars with gold nanoparticles (GNPs) and these with proteolytic α-chymotrypsin (CHT) via thiol-gold interaction. The micropillar arrays were replicated via PDMS soft lithography, which facilitated thiol-ene curing without the photoinitiators, and thus straightforward bonding and good control over the surface chemistry (number of free surface thiols). The specificity of thiol-gold interaction was demonstrated over allyl-rich thiol-ene surfaces and the robustness of the CHT-IMERs at different flow rates and reaction temperatures using bradykinin hydrolysis as the model reaction. The product conversion rate was shown to increase as a function of decreasing flow rate (increasing residence time) and upon heating of the IMER to physiological temperature. Owing to the effective enzyme immobilization onto the micropillar array by GNPs, no further purification of the reaction solution was required prior to mass spectrometric detection of the bradykinin hydrolysis products and no clogging problems, commonly associated with conventional capillary packings, were observed. The activity of the IMER remained stable for at least 1.5 h (continuous use), suggesting that the developed protocol may provide a robust, new approach to implementation of IMER technology for proteomics research. Graphical abstract.


Assuntos
Quimotripsina/química , Enzimas Imobilizadas/química , Ouro/química , Dispositivos Lab-On-A-Chip , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Animais , Bradicinina/química , Bovinos , Hidrólise , Modelos Moleculares
19.
J Thromb Haemost ; 17(5): 759-770, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30801944

RESUMO

Essentials Zymogen PK is activated to PKa and cleaves substrates kininogen and FXII contributing to bradykinin generation. Monomeric PKa and dimeric homologue FXI utilize the N-terminal apple domains to recruit substrates. A high-resolution 1.3 Å structure of full-length PKa reveals an active conformation of the protease and apple domains. The PKa protease and four-apple domain disc organization is 180° rotated compared to FXI. SUMMARY: Background Plasma prekallikrein (PK) and factor XI (FXI) are apple domain-containing serine proteases that when activated to PKa and FXIa cleave substrates kininogen, factor XII, and factor IX, respectively, directing plasma coagulation, bradykinin release, inflammation, and thrombosis pathways. Objective To investigate the three-dimensional structure of full-length PKa and perform a comparison with FXI. Methods A series of recombinant full-length PKa and FXI constructs and variants were developed and the crystal structures determined. Results and conclusions A 1.3 Å structure of full-length PKa reveals the protease domain positioned above a disc-shaped assemblage of four apple domains in an active conformation. A comparison with the homologous FXI structure reveals the intramolecular disulfide and structural differences in the apple 4 domain that prevents dimer formation in PK as opposed to FXI. Two latchlike loops (LL1 and LL2) extend from the PKa protease domain to form interactions with the apple 1 and apple 3 domains, respectively. A major unexpected difference in the PKa structure compared to FXI is the 180° disc rotation of the apple domains relative to the protease domain. This results in a switched configuration of the latch loops such that LL2 interacts and buries portions of the apple 3 domain in the FXI zymogen whereas in PKa LL2 interacts with the apple 1 domain. Hydrogen-deuterium exchange mass spectrometry on plasma purified human PK and PKa determined that regions of the apple 3 domain have increased surface exposure in PKa compared to the zymogen PK, suggesting conformational change upon activation.


Assuntos
Fator XI/química , Calicreína Plasmática/química , Sítios de Ligação , Bradicinina/química , Humanos , Inflamação , Cininogênios/química , Mutação , Pré-Calicreína/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas Recombinantes/química , Trombose
20.
Free Radic Biol Med ; 131: 126-132, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30502457

RESUMO

Fast Photochemical Oxidation of Protein (FPOP), based on a pulsed KrF laser (248 nm) for free-radical generation, is a biophysical method that utilizes hydroxyl radicals to footprint proteins in solution. FPOP has been recognized for structural proteomics investigations, including epitope mapping, protein-aggregation characterization, protein-folding monitoring, and binding-affinity determination. The distinct merits of the platform are: i) the use of a scavenger to control radical lifetime and allow fast ("snapshot") footprinting of solvent-accessible residues in a protein; ii) the employment of a flow system to enable single-shot irradiation of small plugs of the targeted sample; iii) the use of methionine and catalase after radical oxidation chemistry to prevent post-oxidation with residual oxidizing species; and iv) the utilization of mature mass spectrometry-based proteomic methods to afford detailed analysis. In addition to •OH, other reactive reagents (e.g., carbenes, iodide, sulfate radical anion, and trifluoromethyl radical) can be implemented on this platform to increase the versatility and scope. In this study, we further elaborate the use of FPOP platform to generate secondary radicals and establish a workflow to answer fundamental questions regarding the intrinsic selectivity and reactivity of radicals that are important in biology. Carbonate radical anion is the example we chose owing to its oxidative character and important putative pathogenic roles in inflammation. This systematic study with model proteins/peptides gives consistent results with a previous study that evaluated reactivity with free amino acids and shows that methionine and tryptophan are the most reactive residues with CO3-•. Other aromatic amino acids (i.e., tyrosine, histidine and phenylalanine) exhibit moderate reactivity, whereas, aliphatic amino acids are inert, unlike with •OH. The outcome demonstrates this approach to be appropriate for studying the fast reactions of radicals with proteins.


Assuntos
Angiotensina I/química , Bombesina/química , Bradicinina/química , Carbonatos/química , Encefalina Leucina/química , Sequência de Aminoácidos , Catalase/química , Radicais Livres , Peróxido de Hidrogênio/química , Cinética , Lasers de Excimer , Luz , Metano/análogos & derivados , Metano/química , Metionina/química , Oxirredução , Processos Fotoquímicos , Soluções , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...